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Abstract Small crystalline particles are often formed comprising near-polyhedral
shapes with round edges. When near-polyhedral shapes are analyzed and discussed, it
is convenient if these shapes can be expressed by equations with simple parameters.
Superspheres are solids expressing various shapes between those of polyhedra and
spheres. The superspherical-shape approximation is used in this study to consider the
morphology of cubic crystal structure particles. Various near-polyhedral shapes com-
posed of {100}, {111} and {110} planes are described using a simple equation with
three shape-related parameters. It is shown that the superspherical-shape approxima-
tion is a useful geometrical tool for evaluating the morphology of small crystalline
particles.

Keywords Particle · Surface energy · Equilibrium shape · Polyhedron · Supersphere

1 Introduction

Small crystalline particles are often formed comprising near-polyhedral shapes with
round edges [1–5]. When near-polyhedral shapes are analyzed, it is convenient if these
shapes can be expressed by equations with simple parameters. In 2001, Onaka consid-
ered the stress states of materials containing particles, and discussed the effect of par-
ticle shape when shapes are between those of cubes and spheres [6]. Onaka et al. used
an equation for superspheres to describe intermediate shapes [6–9]. Onaka recently
extended this equation for superspheres, and derived basic equations to describe shapes
intermediate of various convex polyhedra and spheres [10,11]. In the present paper,
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superspheres refer to intermediate shapes described by these basic equations [10]. The
near-polyhedral shapes of small metal particles are discussed by approximating their
shapes with superspheres.

For cubic crystal structure metals, the low-index {100}, {111} and {110} planes
have lower values of surface-energy density. Near-polyhedral shapes composed of
low-index planes are often observed for metal particles. The origin for this has been
discussed with regards to the anisotropy of surface energy [1–5]. The quantitative
evaluation of particle shapes is the basis of such discussion. In the present study, it
is shown that the superspherical-shape approximation is a useful geometrical tool for
describing the near-polyhedral shapes of crystalline particles.

2 Superspheres giving {100} – {111} – {110} polyhedra

The characteristics and currently available equations for superspheres are first sum-
marized [10]. Crystallographic indices of cubic crystals are used in the present study.
A distinct characteristic of superspheres is that the combined shapes of polyhedra
and superspheres can be described by combining the equations of each polyhedron
[10,11]. Figure 1 shows a {100} – {111} – {110} polyhedron formed by the com-
bination of a {100} cube, {111} octahedron and {110} rhombic dodecahedron, in
which the innermost surfaces of the three polyhedra are retained to form the combined
polyhedron. Equations describing the shapes of superspheres have been derived from
the spherical coordinates [10]. A basic equation that provides the radial coordinate of
the {100} – {111} – {110} polyhedron is given by [10]:

r = R
[
G0(1, 0, 0) +

(√
3α

)p
GI(γ, γ, γ ) +

(√
2β

)p
GII(κ, κ, 0)

]1/p , (1)

where R is the size parameter, p is the shape parameter for determining supersphere
polyhedrality (i.e. the degree to which the supersphere is a polyhedron), and α and
β are shape parameters for determining the ratios of the {100}, {111} and {110}
surfaces of the polyhedron. The functions G0(1, 0, 0), GI(γ, γ, γ ) and GII(κ, κ, 0)

in Eq. (1) describe the cubic, octahedral and dodecahedral superspheres, respectively,
whose explicit expressions are given in Appendix I. The shape of the {100} – {111}
– {110} polyhedron shown in Fig. 1 consists of six square {100}, eight equilateral-
triangular {111} and 12 square {110} planes. This shape is given by Eq. (1), where

α = 1/
(

2
√

2 − 1
)

≈ 0.547, β = 1/
√

2 ≈ 0.707 and p → ∞. Figure 2a–c show

the change in shape given by Eq. (1) with increasing values of p.
Figure 3 is a diagram showing the dependence of polyhedron shape on α and β,

given by Eq. (1) where p → ∞. In Fig. 3, the shape is determined by the location in
the quadrilateral surrounded by the points P of (α, β) = (1/3, 0.5), Q of (0.5, 0.5),
R of (1, 1) and S of (2/3, 1). The insets in Fig. 3 show various shapes in and around
the quadrilateral. The diagram is summarized as follows:

1. Three basic polyhedra
(a) {100} cube on point P
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Fig. 1 The polyhedron afforded by the addition of a {100} cube, {111} octahedron and {110} dodecahe-

dron. The resulting polyhedron is described by Eq. (1), where p → ∞, α = 1/
(

2
√

2 − 1
)

≈ 0.547

and β = 1/
√

2 ≈ 0.707. To illustrate the relationship between the polyhedra, the respective positions of
octahedron point A and dodecahedron point B are indicated on the combined polyhedron
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Fig. 2 Dependence of supersphere shape on the shape parameter p, as given by Eq. (1), where α =
1/

(
2
√

2 − 1
)

≈ 0.547 and β = 1/
√

2 ≈ 0.707: a p = 4, b p = 20 and c p = 100

Fig. 3 Diagram showing the
variation in shape of
{100} – {111} – {110}
polyhedra, given by Eq. (1) with
p → ∞
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(b) {111} octahedron on point R
(c) {110} dodecahedron on point S

2. Combination of two basic polyhedra
(a) {100} – {111} polyhedra changing from {100} cube to {111} octahedron

on the line from P to R via Q, by truncating the eight vertices of the cube
(b) {111} – {110} polyhedra changing from {111} octahedron to {110} dodeca-

hedron on the line from R to S, by chamfering the 12 edges of the octahedron
(c) {110} – {100} polyhedra changing from {110} dodecahedron to {100} cube

on the line from S to P, by truncating six of the 14 vertices of the dodecahedron
3. Combination of three basic polyhedra

(a) {100} – {111} – {110} polyhedra with mutually non-connected {110} sur-
faces in Region 1

(b) {100} – {111} – {110} polyhedra with mutually connected {110} surfaces
in Region 2

The boundary between Regions 1 and 2, expressed by the curve from P to R, is written
as:

β = 2α/ (1 + α) (2)

While the result presented in Fig. 3 has been previously demonstrated by Onaka [10],
the boundary between Regions 1 and 2 in Fig. 3 is a new addition. The transition of
polyhedra similar to that shown in Fig. 3 has recently been discussed by Suárez et al.
[12]. In Appendix II, the volume and surface area of the polyhedra shown in Fig. 3
are written as a function of α and β.

3 Shape of small metal particles

The shapes of small metal particles shown in previous studies are now considered using
the superspherical approximation. Menon and Martin reported producing ultrafine Ni
particles by vapor condensation in an inert gas plasma reactor [5]. They reported the
crystallographic characterization of the particles by transmission electron microscopy
[5]. In Fig. 4, the inside curve shows the outline of a Ni particle observed from the[
11̄0

]
direction, which was traced from a micrograph shown in Fig. 5a of their paper

[5]. The outside curve in Fig. 4 shows the outline of a supersphere with parameters
(α, β, p) = (0.59, 0.63, 9.0) observed from the same direction. The inner and outer
curves in Fig. 4 are in good agreement, with the supersphere well reproducing the
near-polyhedral shape of the Ni particle.

Another example is shown in Fig. 5a and b, where the shape of an Al particle formed
by evaporation [2] is compared with that of a supersphere. The inside curves in Fig.
5a and b show the outline of a single Al particle observed from the

[
11̄0

]
and [100]

directions, respectively. The Al particle shape when viewed from the two directions
is shown in Figs. 2a and 3a of the original paper [2]. Comparing Figs. 5a and 4 in
the current paper, it is clear that the Al particle has a greater degree of polyhedrality
than the Ni particle. The outside curves in Fig. 5a and b are those of a supersphere
with (α, β, p) = (0.60, 0.58, 14.4). Again, the supersphere well reproduces the
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Fig. 4 The inside curve shows
the outline of a Ni particle
observed from the

[
11̄0

]
direction, which was traced from
a micrograph shown in Fig. 5a
of the original paper [5]. The
scale bar shows the size of the
Ni particle. The outside curve is
the outline of a supersphere with
parameters
(α, β, p) = (0.59, 0.63, 9.0)

observed from the same
direction
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Fig. 5 The inside curves show the outlines of an Al particle observed from the a
[
11̄0

]
and b [100]

directions, which were traced from micrographs shown in Figs. 2a and 3a of the original paper [2]. The
scale bars show the particle size. The outside curves in Figs. 4a and b are those of a supersphere with
(α, β, p) = (0.60, 0.58, 14.4) observed from the same directions

near-polyhedral shape of the Al particle with a higher value of p. Kimoto and Nishida
[2] describe the shape of the Al particle as a {100} – {111} polyhedron. However,
Fig. 5a and b demonstrate that the {110} surface also has a contribution to the particle
shape.

4 Comparison with the Wulff shape

When the anisotropy of a material’s surface-energy density is known, the Wulff shape
provides an equilibrium shape determined by the surface energy [13,14]. In this
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section, Wulff shapes are compared with superspherical shapes minimizing the sur-
face energy. The anisotropy of surface-energy density treated here is based on the
broken-bond model for face-centered-cubic (fcc) crystals [15].

The broken-bond model considers that the formation of surfaces in crystalline mate-
rials invariably results in the breaking of interatomic bonds across the surfaces [15]. In
the nearest-neighbor broken-bond model for fcc crystals, the surface-energy density
γh for a surface with a given unit normal vector νh is written as:

γh = (νh · ν210) γ210, (3)

where γ210 and ν210 are the maximum surface-energy density and unit normal vector
for the {210} plane, respectively. The Wulff shape for the anisotropy of surface-energy
density given by Eq. (3) is a {100} – {111} polyhedron with planar faces and sharp
edges [5,11]. However, the shapes of small fcc metal particles usually have round
edges, as is demonstrated in Figs. 4 and 5. This suggests that the anisotropy of real
materials may be lower than that given by Eq. (3).

To change the degree of the anisotropy in Eq. (3), an index φ (0 ≤ φ ≤ 1) is intro-
duced, giving:

γh/γ210 = (νh · ν210)
φ (4)

The anisotropy given by Eq. (4) decreases with decreasing φ over the range 1–0. While
the introduction of φ is a phenomenological treatment, the anisotropy provided by the
nearest-neighbor broken-bond model decreases when broken bonds between second
or subsequent nearest neighbors are considered [5]. The contours of γh/γ210 provided
by Eq. (4) and values for {100}, {111} and {110} surfaces for various values of φ are
shown in Fig. 6.

The normalized surface energy N� is given by:

N� =
∑

γhds/
(
γ210V 2/3

)
. (5)

N� is a measure of the shape’s dependence on the surface energy, where ds is the
surface element, and the summation of γhds is made over the entire surface [11].
When φ is known, N� of superspheres can be calculated using Eqs. (1), (4) and (5).
The p dependence of N� was first calculated and the minimum of N� as a function
of p was determined for the fixed values of α and β. Figure 7 shows the contours
of the minimum N� for φ = 0.5 as a function of α and β. As shown in Fig. 7, the
global minimum N�(min) and shape parameters (α, β, p) providing the minimum are
determined as N�(min) = 4.642 and (α, β, p) = (0.62, 0.66, 17.1). This analysis
was carried out for various values of φ.

The Wulff shape can be determined as a function of φ, using the well-known method
of construction [13,14]. Figure 8 shows a comparison between the shapes of super-
spheres giving the global minimum N� (outside curves) and the Wulff shapes (inside
curves) for (a) φ = 0.75, (b) φ = 0.5 and (c) φ = 0.25. Figure 8 shows that the
superspherical-shape approximation well reproduces the Wulff shapes even at low
anisotropy of φ = 0.25.
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Fig. 6 Surface energy contours showing the values of γh/γ210 given by Eq. (4), for a φ = 1 (the value for
the nearest-neighbor broken-bond model), b φ = 0.75, c φ = 0.5 and d φ = 0.25

Fig. 7 The contours of the local
minimum N� as a function of α

and β, for φ = 0.5. The global
minimum N�(min) and shape
parameters (α, β, p) providing
the minimum are determined as
N�(min) = 4.642 and
(α, β, p) = (0.62, 0.66, 17.1)
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(a) 

(b) 

(c) 

Fig. 8 Shapes of superspheres (outside curves) showing the global minimum N� , and those of the Wulff
shape (inside curves). View from the

[
11̄0

]
(left) and [100] (right) directions for a φ = 0.75, b φ = 0.5

and c φ = 0.25
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Table 1 Shape parameters
(α, β, p) of superspheres,
showing the global minimum of
N�, N�(min) for various values
of the index φ

Index φ Shape parameters giving N�(min)

N�(min), (α, β, p)

1 (2/3, 2/3, ∞) [5,11] 4.26 [11]
0.75 (0.64, 0.66, 39.4) 4.47
0.5 (0.62, 0.66, 17.1) 4.64
0.25 (0.59, 0.65, 9.4) 4.76

Values of the index φ, the global minimum N� and shape parameters (α, β, p)

providing the minimum are listed in Table 1. The results for φ = 1 [5,11] of the
nearest-neighbor broken-bond model are also included in Table 1. α and p decrease
and the minimum N� increases with decreasing φ.

The shape parameters (α, β, p) = (0.59, 0.63, 9.0) of the Ni particle shown in
Fig. 4 are similar to values (0.59, 0.65, 9.4) for φ = 0.25 in Table 1. The shape
parameters (α, β, p) = (0.60, 0.58, 14.4) of the Al particle shown in Fig. 5 are also
similar to values (0.62, 0.66, 17.1) for φ = 0.5 in Table 1. While the reasons would
be best discussed from a physical or chemical point of view, the present superspher-
ical-shape approximation provides quantitative information for these similarities to
be discussed. The anisotropy of surface energy or the energy criterion of the particle
shape is often unknown, as is the case for the Ni and Al particles shown in Figs. 4 and 5,
respectively. In such cases, the classification of particle shapes with simple parameters
such as (α, β, p) is an effective method for discussing the origin of particle shapes. It
is concluded that the superspherical-shape approximation is a useful geometrical tool
for describing the near-polyhedral shapes of crystalline particles.
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by the Japan Society for the Promotion of Science.

Appendix I

The functions G0(1, 0, 0), GI(γ, γ, γ ) and GII(κ, κ, 0) in Eq. (1)
When p = 2, the following equation using the x − y − z orthogonal coordinate

system gives a sphere with radius R:

|x/R|p + |y/R|p + |z/R|p = 1 (R > 0, p ≥ 2). (A1)

Alternatively, when p → ∞ a cube with edges of 2R is given by Eq. (A1). Shapes
intermediate of a sphere and cube are described by selecting an appropriate p value
[6,10,11].

Equation (A1) is rewritten with the spherical coordinates (r, θ, ϕ) as [10]:

rcube(θ, ϕ) = R

[G0(1, 0, 0)]1/p , (A2a)
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where

G0(1, 0, 0) = |g(1, 0, 0)|p + |g(0, 1, 0)|p + |g(0, 0, 1)|p (A2b)

and

g (a, b, c) = a (sin θ cos ϕ) + b (sin θ sin ϕ) + c (cos θ) . (A2c)

For an octahedral supersphere approaching a regular octahedron composed of {111}
surfaces, the shape is given by [10]:

rocta(θ, ϕ) = R
[(√

3α
)p

GI(γ, γ, γ )
]1/p , (A3a)

where

GI(γ, γ, γ ) = |g(γ, γ, γ )|p + |g(−γ, γ, γ )|p + |g(γ,−γ, γ )|p + |g(γ, γ,−γ )|p

(A3b)

and

γ = 1/
√

3. (A3c)

As shown in Fig. 1, the parameter α determines the size of the octahedral supersphere
and gives the coordinate of an octahedron vertex as (0, 0, R/α) when p → ∞.

Alternatively, for a dodecahedral supersphere approaching a rhombic dodecahedron
composed of {110} surfaces, the shape is given by [10]:

rdodeca(θ, ϕ) = R
[(√

2β
)p

GII(κ, κ, 0)
]1/p , (A4a)

where

GII(κ, κ, 0) = |g(κ, κ, 0)|p + |g(κ,−κ, 0)|p + |g(0, κ, κ)|p

+ |g(0, κ,−κ)|p + |g(κ, 0, κ)|p + |g(κ, 0,−κ)|p (A4b)

and

κ = 1/
√

2. (A4c)

The parameter β also determines the size of the supersphere and gives the coordinate
of a dodecahedron vertex as (0, 0, R/β) when p → ∞.

123



J Math Chem (2012) 50:249–260 259

Appendix II

The volume and surface area of the polyhedra shown in Fig. 3
The volume V and the {100}, {111} and {110} surface area, S100, S111 and S110 of

the polyhedra shown in Fig. 3 are written as a function of α and β. In Region 1, these
are given by

V = 4

[
1

3α3

{
1 − 3 (1 − α)3

}
− 2

(
1

α
− 1

β

)2 (
3 − 1

2α
− 1

β

)]
R3,

S100 = 12

{
1

α2 (1 − α)2 − 2

(
1

α
− 1

β

)2
}

R2,

S111 = 4
√

3

{(
3 − 1

α

)2

− 3

(
2 − 1

β

)2
}

R2,

and

S110 = 24
√

2

(
1

α
− 1

β

) (
2 − 1

β

)
R2.

On the other hand, in Region 2, these are written as

V = 2

{
1

β3 − 1

3

(
3

β
− 2

α

)3

− 4

(
1

β
− 1

)3
}

R3,

S100 = 24

β2 (1 − β)2 R2,

S111 = 4
√

3

(
3

β
− 2

α

)2

R2,

and

S110 = 6
√

2

{
1

β2 −
(

3

β
− 2

α

)2

− 4

(
1

β
− 1

)2
}

R2.

The above results are valid for the polyhedron on the periphery of the quadrilateral
PQRS. For example, when (α, β) = (1/3, 0.5), the above equations for Regions 1
and 2 commonly become

V = 8R3, S100 = 24R2 and S111 = S110 = 0,

which are the results for the {100} cube with edges 2R on P. Among the various
polyhedra in Fig. 3, the polyhedron having the minimum total surface area ST =
S100 + S110 + S111 under the same V is that of α = 1/

√
3 and β = 1/

√
2 in Region
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1, which has the normalized surface-area N = ST/V 2/3 ≈ 5.05. This is the result
obtained by Suárez et al. [16].
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